Davide Moltisanti

Research associate at the University of Edinburgh, United Kingdom · davide.moltisanti@ed.ac.uk

Hello all, I’m Davide, a research associate at the University of Edinburgh.
I work with Laura Sevilla, Frank Keller and Hakan Bilen

Previously I was a research fellow at the Nanyang Technological University (NTU), Singapore,
where I worked with Chen Change Loy

I took my PhD in Computer Science at the University of Bristol (UK) in November 2019, supervised by Dima Damen
I took my MSc in Computer Science at the University of Catania (Italy) in November 2013, supervised by Giovanni Maria Farinella

My area of research is computer vision, with a focus on video understanding, action recognition, visual grounding and semantic analysis

I did my PhD on temporal supervision for action recognition in videos (you can find my thesis here)


Publications

An Action Is Worth Multiple Words: Handling Ambiguity in Action Recognition

Kiyoon Kim, Davide Moltisanti, Oisin Mac Aodha, Laura Sevilla-Lara

Precisely naming the action depicted in a video can be a challenging and oftentimes ambiguous task. In contrast to object instances represented as nouns (e.g. dog, cat, chair, etc.), in the case of actions, human annotators typically lack a consensus as to what constitutes a specific action (e.g. jogging versus running). In practice, a given video can contain multiple valid positive annotations for the same action. As a result, video datasets often contain significant levels of label noise and overlap between the atomic action classes. In this work, we address the challenge of training multi-label action recognition models from only single positive training labels. We propose two approaches that are based on generating pseudo training examples sampled from similar instances within the train set. Unlike other approaches that use model-derived pseudo-labels, our pseudo-labels come from human annotations and are selected based on feature similarity. To validate our approaches, we create a new evaluation benchmark by manually annotating a subset of EPIC-Kitchens-100's validation set with multiple verb labels. We present results on this new test set along with additional results on a new version of HMDB-51, called Confusing-HMDB-102, where we outperform existing methods in both cases.

Project webpage | Download paper

British Machine Vision Conference (BMVC) - 2022

BRACE: The Breakdancing Competition Dataset for Dance Motion Synthesis

Davide Moltisanti, Jinyi Wu, Bo Dai, Chen Change Loy

Generative models for audio-conditioned dance motion synthesis map music features to dance movements. Models are trained to associate motion patterns to audio patterns, usually without an explicit knowledge of the human body. This approach relies on a few assumptions: strong music-dance correlation, controlled motion data and relatively simple poses and movements. These characteristics are found in all existing datasets for dance motion synthesis, and indeed recent methods can achieve good results. We introduce a new dataset aiming to challenge these common assumptions, compiling a set of dynamic dance sequences displaying complex human poses. We focus on breakdancing which features acrobatic moves and tangled postures. We source our data from the Red Bull BC One competition videos. Estimating human keypoints from these videos is difficult due to the complexity of the dance, as well as the multiple moving cameras recording setup. We adopt a hybrid labelling pipeline leveraging deep estimation models as well as manual annotations to obtain good quality keypoint sequences at a reduced cost. Our efforts produced the BRACE dataset, which contains over 3 hours and 30 minutes of densely annotated poses. We test state-of-the-art methods on BRACE, showing their limitations when evaluated on complex sequences. Our dataset can readily foster advance in dance motion synthesis. With intricate poses and swift movements, models are forced to go beyond learning a mapping between modalities and reason more effectively about body structure and movements.

Project webpage | Download paper

European Conference on Computer Vision (ECCV) - 2022

Rescaling Egocentric Vision: Collection Pipeline and
Challenges for EPIC-KITCHENS-100

Dima Damen, Hazel Doughty, Giovanni Maria Farinella, Antonino Furnari, Evangelos Kazakos, Jian Ma, Davide Moltisanti, Jonathan Munro, Toby Perrett, Will Price, Michael Wray

This paper introduces the pipeline to extend the largest dataset in egocentric vision, EPIC-KITCHENS. The effort culminates in EPIC-KITCHENS-100, a collection of 100 hours, 20M frames, 90K actions in 700 variable-length videos, capturing long-term unscripted activities in 45 environments, using head-mounted cameras. Compared to its previous version, EPIC-KITCHENS-100 has been annotated using a novel pipeline that allows denser (54% more actions per minute) and more complete annotations of fine-grained actions (+128% more action segments). This collection enables new challenges such as action detection and evaluating the "test of time" - i.e. whether models trained on data collected in 2018 can generalise to new footage collected two years later. The dataset is aligned with 6 challenges: action recognition (full and weak supervision), action detection, action anticipation, cross-modal retrieval (from captions), as well as unsupervised domain adaptation for action recognition. For each challenge, we define the task, provide baselines and evaluation metrics

Project webpage | Download paper

International Journal of Computer Vision (IJCV) - 2021

The EPIC-KITCHENS Dataset: Collection, Challenges and Baselines

Dima Damen, Hazel Doughty, Giovanni Maria Farinella, Sanja Fidler, Antonino Furnari, Evangelos Kazakos, Davide Moltisanti, Jonathan Munro, Toby Perrett, Will Price, Michael Wray

Since its introduction in 2018, EPIC-KITCHENS has attracted attention as the largest egocentric video benchmark, offering a unique viewpoint on people's interaction with objects, their attention, and even intention. In this paper, we detail how this large-scale dataset was captured by 32 participants in their native kitchen environments, and densely annotated with actions and object interactions. Our videos depict nonscripted daily activities, as recording is started every time a participant entered their kitchen. Recording took place in 4 countries by participants belonging to 10 different nationalities, resulting in highly diverse kitchen habits and cooking styles. Our dataset features 55 hours of video consisting of 11.5M frames, which we densely labelled for a total of 39.6K action segments and 454.2K object bounding boxes. Our annotation is unique in that we had the participants narrate their own videos after recording, thus reflecting true intention, and we crowd-sourced ground-truths based on these. We describe our object, action and. anticipation challenges, and evaluate several baselines over two test splits, seen and unseen kitchens. We introduce new baselines that highlight the multimodal nature of the dataset and the importance of explicit temporal modelling to discriminate fine-grained actions e.g. 'closing a tap' from 'opening' it up.

Project webpage | Download paper

Transactions on Pattern Analysis and Machine Intelligence (TPAMI) - 2020

Action Recognition from Single Timestamp Supervision in Untrimmed Videos

Davide Moltisanti, Sanja Fidler, Dima Damen

Recognising actions in videos relies on labelled supervision during training, typically the start and end times of each action instance. This supervision is not only subjective, but also expensive to acquire. Weak video-level supervision has been successfully exploited for recognition in untrimmed videos, however it is challenged when the number of different actions in training videos increases. We propose a method that is supervised by single timestamps located around each action instance, in untrimmed videos. We replace expensive action bounds with sampling distributions initialised from these timestamps. We then use the classifier's response to iteratively update the sampling distributions. We demonstrate that these distributions converge to the location and extent of discriminative action segments.
We evaluate our method on three datasets for fine-grained recognition, with increasing number of different actions per video, and show that single timestamps offer a reasonable compromise between recognition performance and labelling effort, performing comparably to full temporal supervision. Our update method improves top-1 test accuracy by up to 5.4%. across the evaluated datasets.

Project webpage | Download paper

Conference on Computer Vision and Pattern Recognition (CVPR) - 2019

Scaling Egocentric Vision: The EPIC-Kitchens Dataset

Dima Damen, Hazel Doughty, Giovanni Maria Farinella, Sanja Fidler, Antonino Furnari, Evangelos Kazakos, Davide Moltisanti, Jonathan Munro, Toby Perrett, William Price, Michael Wray

First-person vision is gaining interest as it offers a unique viewpoint on people's interaction with objects, their attention, and even intention. However, progress in this challenging domain has been relatively slow due to the lack of sufficiently large datasets. In this paper, we introduce EPIC-Kitchens, a large-scale egocentric video benchmark recorded by 32 participants in their native kitchen environments. Our videos depict non-scripted daily activities: we simply asked each participant to start recording every time they entered their kitchen. Recording took place in 4 cities (in North America and Europe) by participants belonging to 10 different nationalities, resulting in highly diverse cooking styles. Our dataset features 55 hours of video consisting of 11.5M frames, which we densely labelled for a total of 39.6K action segments and 454.3K object bounding boxes. Our annotation is unique in that we had the participants narrate their own videos (after recording), thus reflecting true intention, and we crowd-sourced ground-truths based on these. We describe our object, action and anticipation challenges, and evaluate several baselines over two test splits.

Dataset webpage | Download paper

European Conference on Computer Vision (ECCV) - 2018

Trespassing the Boundaries: Labelling Temporal Bounds for Object Interactions in Egocentric Video

Davide Moltisanti, Michael Wray, Walterio Mayol-Cuevas, Dima Damen

Manual annotations of temporal bounds for object interactions (i.e. start and end times) are typical training input to recognition, localisation and detection algorithms. For three publicly available egocentric datasets, we uncover inconsistencies in ground truth temporal bounds within and across annotators and datasets. We systematically assess the robustness of state-of-the-art approaches to changes in labelled temporal bounds, for object interaction recognition. As boundaries are trespassed, a drop of up to 10% is observed for both Improved Dense Trajectories and Two-Stream Convolutional Neural Network. We demonstrate that such disagreement stems from a limited understanding of the distinct phases of an action, and propose annotating based on the Rubicon Boundaries, inspired by a similarly named cognitive model, for consistent temporal bounds of object interactions. Evaluated on a public dataset, we report a 4% increase in overall accuracy, and an increase in accuracy for 55% of classes when Rubicon Boundaries are used for temporal annotations.

Project webpage | Download paper

International Conference on Computer Vision (ICCV) - 2017

SEMBED: Semantic Embedding of Egocentric Action Videos

Michael Wray*, Davide Moltisanti*, Walterio Mayol-Cuevas, Dima Damen
(*equal contribution)

We present SEMBED, an approach for embedding an egocentric object interaction video in a semantic-visual graph to estimate the probability distribution over its potential semantic labels. When object interactions are annotated using unbounded choice of verbs, we embrace the wealth and ambiguity of these labels by capturing the semantic relationships as well as the visual similarities over motion and appearance features. We show how SEMBED can interpret a challenging dataset of 1225 freely annotated egocentric videos, outperforming SVM classification by more than 5%.

Project webpage | Download paper

European Conference on Computer Vision Workshops (ECCVW) - 2016

Interests

In my free time I love taking pictures, playing the drums and the guitar, watching films and reading (I am a big National Geographic fan)

I am also a cycling and hiking enthusiast

My photo gallery